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Abstract

A numerical approach to find the eigenvalues of the wave equation applied in a circular duct with convective flow and

soft wall boundary conditions is proposed. The characteristic equation is solved in the frequency domain as a function of a

locally reacting acoustic impedance and the flowMach number. In addition, the presence of the convective flow couples the

solution of the eigenvalues with the axial propagation constants. The unknown eigenvalues are also related to these

propagation constants by a quadratic expression that leads to two solutions. These two solutions replaced into the

characteristic equation generate two separate eigenvalue problems depending on the direction of propagation. Given that

the resulting nonlinear complex-valued equations do not provide the solution explicitly, a numerical technique must be

used. The proposed approach is based on the minimization of the absolute value of the characteristic equation by the

Nelder–Mead simplex method. The main advantage of this method is that it only uses function evaluations, rather than

derivatives, and geometric reasoning. The minimization is performed starting from very low frequencies and increasing by

small steps to the particular frequency of interest. The initial guess for the first frequency of calculation is provided as the

hard wall eigenvalue solution. Then, the solution from the previous step is used as the initial value for the next calculation.

This approach was specifically developed for applications with resonator-type liners commonly used in the commercial

aviation industry, where the low-frequency behavior resembles that of a hard wall and agrees with the first initial guess for

the first frequency of calculation. The numerical technique was found to be very robust in terms of convergence and

stability. Also, the method provides a physical meaning for each eigenvalue since the variation as a function of frequency

can be clearly followed with respect to the values that are originally linked to the hard wall modes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The analytical treatment of sound propagation inside circular lined ducts with uniform flow has been
extensively investigated as a design and optimization tool for the acoustic liners typically used for noise
control of turbofan engines. The first studies consisted in deriving the equations of acoustic motion inside
ducts with different cross-section shapes and general mean flow distributions [1,2]. In addition, the
appropriate soft wall boundary condition was also introduced in order to correctly account for the interaction
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Nomenclature

a duct radius
A modal amplitude
c speed of sound
i imaginary unit, i2 ¼ �1
k wavenumber, eigenvalue
M Mach number
p acoustic pressure
r spatial coordinate (radial)
t time
v particle velocity

z spatial coordinate (axial)
b specific acoustic admittance
y spatial coordinate (angular)
F acoustic mode
o angular frequency

Subscripts and superscripts

‘, +, � direction of propagation
m circumferential mode order
n radial mode order
w wall
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between the grazing flow and the impedance wall. This boundary condition was first developed for rectangular
[3,4] and circular [5] ducts using continuity of pressure and particle displacement. Later, a more formal
analysis was stated by Myers [6] for a duct of arbitrary shape and flow field. Nevertheless, both approaches
lead to the same formulation for ducts with constant cross-section and uniform flow parallel to the duct axis.
The effects of shear flows in the regions close to the duct walls were also subject of extensive investigation. The
main concern of these studies was focused on how the boundary layer profile affects the uniform flow
assumption on the derivation of the boundary condition. It was determined that provided that the boundary
layer is thin enough, the shear flow effects can be properly accounted for in a model for the wall impedance
while the flow distribution can still be assumed uniform [7].

This paper is related to the application of a numerical method to find modal solutions for the particular case
of a lined duct with constant circular cross-section, uniform mean flow parallel to the duct axis, and locally
reacting wall impedance. Under these assumptions, the eigenvalue problem is reduced to finding the roots of a
single transcendental characteristic equation in the frequency domain that depends on the wall normalized
impedance and the flow Mach number. However, the presence of the flow couples the eigenvalue solutions
with the axial propagation constants for the corresponding modes. Since the relation between these two
parameters is quadratic, the original characteristic equation splits into two branches depending on the
direction of sound propagation. Solving the resulting two transcendental equations using typical root-finding
numerical methods can be quite inefficient or unstable since the solutions must be found in the complex plane
rather than the real axis. In contrast, the method adopted in this investigation is based in minimizing the
absolute value of the characteristic equations using the Nelder–Mead simplex method. This method was
developed for minimization of a (nonlinear) scalar function of multiple variables only using function
evaluations, rather than derivatives, and geometric reasoning. In each step, the function is evaluated at the
vertices of a simplex (a generalized triangle in multiple dimensions), which is then deformed towards the
function minimum. For this application, the scalar function is defined as the absolute value of the soft wall
characteristic equation and the two variables are the real and imaginary parts of the complex-valued
eigenvalues. Given that the characteristic equation itself must equal zero at the eigenvalue solutions, each
minimum is also expected to approach zero and be located at the roots of the equation (eigenvalues). For the
first step of calculation, an initial guess must be provided as the centroid of the first simplex. The computed
complex-valued eigenvalues are finally replaced into the system eigenfunctions in order to represent the modes
inside the lined circular duct. The approach can be easily extended to other duct geometries that allow closed-
form solutions for the duct modes.
2. Analytical modeling

The propagation of sound inside the lined circular duct with flow is described by the homogeneous solution
to the acoustic wave equation in a moving medium [1]. For the case considered in this paper, the duct is
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assumed to be infinitely long in the axial z-direction and embedded in a liner with locally reacting impedance.
The flow is assumed to be constant along the duct axis and uniform across the cross section. Fig. 1 presents a
schematic of the assumed geometry and the cylindrical coordinate system. Under these assumptions and
considering harmonic motion of the form eiot, the convected wave equation can be expressed in terms of the
acoustic pressure as

q2p
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1

r
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qr
þ
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þ
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where k0 is the acoustic free wavenumber and M is the flow Mach number. The solution to Eq. (1) is expressed
in the frequency domain as a linear superposition of the propagating modes inside the lined circular duct as

poð r!Þ ¼
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XM
m¼0

XN

n¼0

Að�Þmn F
ð�Þ
mn ðr; yÞ e
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where the superscripts (+) and (�) indicate variables associated to positive and negative z-direction
propagation and the subscripts m and n refer to the circumferential and radial mode order, respectively. For
the circular duct geometry, the acoustic modes are found in terms of spinning exponential functions in the
circumferential direction and Bessel functions of the first kind in the radial direction as [8–10]

Fmnðr; yÞ ¼ Amne
�imyJmðkmnrÞ; m ¼ 0; 1; 2; 3; . . . ; n ¼ 0; 1; 2; 3; . . . , (3)

where Amn is a complex-valued modal amplitude and the argument kmn is the mode eigenvalue. The solution in
Eq. (3) is completely defined by finding the correct eigenvalue kmn from the characteristic equation that
represents the soft wall boundary condition. In addition, the axial wavenumbers kz are also associated with
every mode and are found from the following quadratic dispersion relationship as

k2
mn ¼ k2

0 � k2
zð1�M2Þ � 2k0kzM. (4)

The characteristic equation is obtained by applying the equilibrium Euler’s equation in the radial direction
at the duct wall in combination with the soft wall boundary condition, including the effect of the flow [3–6],
given in terms of the wall specific acoustic admittance bw. Using the pressure solution in Eqs. (2) and (3), this
equation can be found as

ibw

ðk0 �MkzÞ
2

k0
JmðkmnaÞ ¼ �kmnJ 0mðkmnaÞ. (5)

One of the difficulties in solving Eq. (5) arises because the flow Mach number produces a coupling of the
eigenvalue solutions kmn with the particular value of the axial wavenumbers kz that are obtained from the
quadratic expression in Eq. (4). Therefore, the wavenumbers kz are not simply obtained from the eigenvalues
but they also influence the final solution kmn. Given that the relation in Eq. (4) is quadratic, the characteristic
equation then breaks into two branches that are associated with each solution kz of the quadratic relation,
which also represent a direction of propagation, i.e. kðþÞmn and kð�Þmn for positive and negative propagation,
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Fig. 1. Schematic of the assumed infinite circular duct with soft wall and uniform flow in the cylindrical coordinate system.
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respectively. This leads to find two sets of eigenvalues, kðþÞmn and kð�Þmn , also for each direction of propagation,
meaning that the mode shapes inside the duct also depend on the propagation side (contrary to the hard wall
case). The characteristic equations for each solution branch can be expressed as

kðþÞmn J 0mðk
ðþÞ
mn aÞ þ ibw

ðk0 �MkðþÞz Þ
2

k0
Jmðk

ðþÞ
mn aÞ ¼ 0, (6a)

for positive propagation, and

kð�Þmn J 0mðk
ð�Þ
mn aÞ þ ibw

ðk0 �Mkð�Þz Þ
2

k0
Jmðk

ð�Þ
mn aÞ ¼ 0 (6b)

for the negative direction. The two axial wavenumbers kz that follow from Eq. (4) are assigned as
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The particular selection of the complex-valued square root sign in order to satisfy the positive and negative
propagation direction convention defined in Eq. (7) will be discussed in the next section, where the numerical
solution is investigated.
3. Numerical approach to solve eigenvalues

Despite having a closed-form expression for the circular duct modes, the eigenvalues kmn required to
compute the solution must be solved numerically from the derived characteristic equation. As derived in the
previous section, this equation is complex-valued, frequency dependent, nonlinear with respect to the
eigenvalues, and has two solution branches that are associated with the direction of propagation. In addition,
the eigenvalues are also complex-valued and must be computed in the appropriate sequence in order to avoid
skipping any mode order. For these reasons, typical root-finding numerical methods can be quite inefficient to
find the eigenvalues, or even unstable for certain modes. The main objective of this paper is to provide an
alternative numerical approach to solve this problem based on the minimization of the absolute value of the
characteristic equation. The minimization is performed using the Nelder–Mead simplex method and requires
knowledge of an initial guess close to the desired eigenvalue. The general steps of the approach are described
next in addition to the appropriate function definitions corresponding to the problem stated in Eq. (6).
3.1. Nelder– Mead simplex method

The Nelder–Mead simplex method was developed to minimize a scalar real-valued nonlinear function of
multiple real variables and without constraints [11,12]. In the case of mathematically involved functions, the
advantage of this method is that it only uses function evaluations, rather than derivatives, and geometric
reasoning. To this end, the concept of a simplex, a generalized triangle in n dimensions, is used. In every
iteration, the function to be minimized is evaluated at the n+1 vertices of the starting simplex; so they can be
ordered as x1, x2, y, xn+1 such that f ðx1Þpf ðx2Þp � � �pf ðxnþ1Þ. The vertex x1 is classified as the best point,
and xn+1 as the worst point of the simplex. Then, a series of geometric operations are applied to the simplex
with the objective of obtaining new improved vertices and eliminating the worst points from the initial
ordering. These operations are reflection, contraction, expansion and shrinkage [12] with respect to a reference
point x. Fig. 2 presents a schematic of these operations on a two-dimensional simplex (triangle).

Once the set of improved simplexes is obtained, the function is evaluated at the new vertices in order to
determine which ones will replace the worst points from the previous iteration. Finally, the best points will be
stored to form the new simplex that will be used as the starting point of the next iteration (see Refs. [11,12] for
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Fig. 2. Application of the basic deforming operations of: (a) reflection, (b) contraction, (c) expansion and (d) shrinkage. The original
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details about the method). The process is repeated until the minimum is reached to within a certain precision
imposed by the user.

The Nelder–Mead simplex method has become very popular as a minimization algorithm for nonlinear
equations. In fact, it has been introduced into the built-in numerical libraries of several programming
languages as Fortran, C, and MATLAB [13–15]. For this reason, it is not intended to provide a more detailed
description of the method other than the remark that its implementation could be relatively simple in a
computer application.

3.2. Function definition

In order to apply the Nelder–Mead simplex method, the real-valued function to be minimized is defined as
the absolute value of the characteristic equations in Eq. (6) derived for both directions of propagation. Since
the characteristic equation itself must equal zero at the eigenvalue solutions, the defined absolute value
function will also vanish at the location of its minimum values, which correspond to the roots of the equation.
Then, the nonlinear functions to be minimized are defined as

f ðþÞ ¼ kðþÞmn J 0mðk
ðþÞ
mn aÞ þ ibw

ðk0 � kðþÞz MÞ2

k0
Jmðk

ðþÞ
mn aÞ

�����
�����,

f ð�Þ ¼ kð�Þmn J 0mðk
ð�Þ
mn aÞ þ ibw

ðk0 � kð�Þz MÞ2

k0
Jmðk

ð�Þ
mn aÞ

�����
�����. (8)

In addition, note that the simplex method is intended only for expressions that are a function of multiple
real-valued variables. For this reason, the unknown complex-valued eigenvalues are also rearranged by
separating their real and imaginary components in two independent real-valued variables as

kðþÞmn ¼ Re½kðþÞmn � þ i Im½kðþÞmn � ¼ X ðþÞ þ iY ðþÞ,

kð�Þmn ¼ Re½kð�Þmn � þ i Im½kð�Þmn � ¼ X ð�Þ þ iY ð�Þ. (9)

In conclusion, the real-valued functions defined in Eq. (8) are minimized in terms of the two independent
unknowns, i.e. X and Y, and the eigenvalues are later computed by using Eq. (9). As mentioned before, the
algorithm must be provided with an approximate initial guess for each root to be searched. In order to obtain
the correct mode ordering sequence, the approach taken consists in starting the computation from very low
frequencies and advancing by very small steps up to the desired frequency of calculation. For resonator-type
liners, this approach allows using the hard wall eigenvalues as the initial guess for the first step since the
reactance at the lower frequencies approaches (negative) infinite values, i.e. the liner behaves as a hard wall.
Then, the result obtained for each step is used as the initial guess for the next point of calculation and up to the
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desired frequency. Note that after the whole process is finished, it is possible to identify the tracking of the
eigenvalues kðþÞmn and k�mn on the complex plane as a function of frequency and, therefore, identify the proper
mode order based on the hard wall condition.

It is important to also remark that although this application is mainly concentrated on the circular duct
geometry, the presented approach can be easily extended to other cross-section geometries that also have
closed-form solutions and lead to similar characteristic equations, e.g. annular, elliptical or rectangular ducts.
In fact, the only difference is reflected in a re-definition of the functions to be minimized in Eq. (8).

3.3. Solution branches

The two solution branches of the characteristic equation are associated with the propagating direction along
the duct axis. As previously shown, these branches appear as a consequence of the quadratic relation between
the eigenvalues kmn and the axial wavenumber kz, which directly affects the impedance term in Eq. (8). The
parameter controlling each side of the solution is the sign of the square root in the expression for the axial
wavenumbers kðþÞz and kð�Þz (see Eq. (7)). For the analyzed soft wall case, the selection of this sign must be done
carefully since the square root term is always complex valued and could lead to confusion depending on the
quadrant location in the complex plane. In the hard wall case, this problem is not present since the eigenvalues
kmn are real valued and indistinct for both propagating directions. Thus, the square root terms in Eq. (7) are
either purely real or purely imaginary, indicating that the mode is either propagating (cut-on) or decaying (cut-
off), respectively [16]. In this case, it is simple to recognize the direction of propagation of the particular mode
by looking at the sign of the square root term, which represents the phase speed with respect to the flow when
real and the direction of decay when purely imaginary. However, a more detailed analysis must be carried out
for the soft wall case in order to: (a) keep the two individual branches separated and (b) assign the proper
direction of propagation to each eigenvalue. To keep the two branches separated during the calculation,
special care must be taken with the sign of the complex-valued square root that is provided by the numerical
solver. Typically, only one of the two solutions is provided and constrained to a certain semi-plane in the
complex domain, which may not correspond to the solution branch in consideration. It is important to remark
that, once the two branches are separated, one of the two solutions of the square root has to be discarded and
cannot be used for the other branch (because there will be a whole separate computation for the other branch).
In other words, the same square root sign has to be consistently selected throughout the whole calculation in
order to avoid jumping to the wrong solution within a single branch. For this reason, the solver may have to
be manually forced to provide the correct sign that corresponds to the appropriate quadrant. Regarding the
direction of propagation, the problem is certainly more complicated than simply looking at the decay direction
of the modes since the possibility of unstable solutions when mean flow is present in a lined duct has been
previously identified [4]. These unstable solutions were investigated in detail by Rienstra [17] and were
identified to represent surface waves meaning that the corresponding mode is spatially confined to the
immediate neighborhood of the wall. A strict causality analysis suggested that these solutions could be
representing spatial instabilities for certain combinations of impedance and Mach numbers, and they might be
associated with the unstable nature of the wall shear layer that separates the flow from the liner cavity. Several
other references [18–22] recognize the possibility of spatial instabilities but their existence is still very much an
open question because there is no experimental evidence of spatial amplification on real lined ducts. In fact,
some investigators solving the mode propagation in finite length liners never mentioned the possibility of any
unstable mode [9,23,24]. A study presented by Koch and Möhring [25] remarks that the presence of
instabilities may be compensated by other nonlinearities which are, in fact, not modeled. Thus, these
instabilities may be disregarded in order to obtain a first approximation using a linear model. Based on this
discussion, this work will not consider the possibility of instabilities and all modes will be assumed to decay in
the directions they propagate. However, if a particular application requires the identification of possible
instabilities, the method adopted here can still be adjusted (relatively simply) for this purpose, provided it is
based on tracking the eigenvalues from the hard wall condition. A brief discussion on this subject will be
presented in the next subsection. For the decaying-mode condition, the imaginary part of kz must be selected
as negative for modes propagating in the positive direction and positive for the negative direction. But as
mentioned before, it is also required to carefully control the sign of the square root term in Eq. (7) in order to
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obtain the correct value for kz and avoid the solution to jump to different branches due to the numerical
solver. The convention adopted here consists in always computing the square root in the negative complex

semi-plane, i.e. Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � ð1�M2Þk2

mn

q� �
o0, and directly replacing this root in the expressions in Eq. (7) with

the + or � sign manually assigned. Then, the wavenumbers kðþÞz and kð�Þz as defined in Eq. (7) will ensure
positive and negative propagation, respectively, as long as the same solution branch is used throughout the
whole calculation. Also, the eigenvalues kðþÞmn and kð�Þmn will correspond with the same wavenumbers, i.e. kðþÞz and
kð�Þz , and apply to the positive and negative propagating modes, respectively.
3.4. Advantages of tracking the eigenvalues in frequency

As described above, the solution procedure consists in tracking the eigenvalues by small steps in frequency
and starting from very low frequencies where the impedance is assumed to be infinity. Then, the computation
continues by slowly increasing the frequency and adjusting the impedance according to a certain impedance
law. For the application considered in this paper, this is very suitable for resonator-type liners, typically used
for aero-engines, and allows investigating how the attenuation properties of a particular liner behave as a
function of frequency. But since the eigenvalues are being tracked by small steps, the method also provides
flexibility to follow arbitrary impedance laws or ideal contours in order to analyze other, more fundamental
problems such as identifying surface waves and performing causality analysis. The key for a correct solution is
to always trace the solution and start from a known initial value. A detailed discussion on how to approach
this fundamental analysis, which is also based on tracing the eigenvalues from the hard wall condition, has
been provided by Rienstra [17].

Another implication of this concept of tracking the eigenvalues in frequency is related to solution of the
double-pole type. These solutions occur when the eigenvalues of two different modes of the same
circumferential order approach the same complex value. In the vicinity of these points, any irregularities can
be clearly detected by following the solution through its individual path and inspecting if the eigenvalue
jumped to the incorrect trajectory after reaching the double pole. But the fact that the solution is started from
two separate points guarantees that no mode orders will be skipped in the calculation in the case that a double
point is reached. Also, since the two eigenvalues are expected to follow two individual paths (with frequency),
a simple inspection of the results will make evident if the two solutions have merged after the double point. Re-
adjusting the step size of the numerical routine to a smaller value usually is enough to avoid this problem. A
second alternative is to compute the eigenvalues up to the double-pole point, and then obtain the rest of the
trajectory by starting from the other frequency end (that corresponds to the liner anti-resonance) and
descending in frequency down to the double pole. A brief comment to clarify this point will be provided later
in the numerical results.
4. Numerical results

As an illustration of the proposed numerical approach, the mode eigenvalues kmn and wavenumbers kz are
solved for a particular lined duct configuration with uniform flow. As described in the previous sections, the
inputs required are the hard wall eigenvalues (initial guess for the first step), the fluid properties, the flow
Mach number, and the liner normalized impedance (or admittance). The considered normalized impedance
corresponds to a resonator-type liner and it is defined as

Zw

rc
¼ Rþ i mf � cot

2pf

c
d

� �� �
, (10)

where R ¼ 1.5, rc is the liner resistance, m ¼ 5.0E�5 s is the facing screen reactance slope, d ¼ 2.54 cm is the
liner core depth, and f is the frequency in Hz. The investigated frequency range is from 0 to 6750Hz, i.e. anti-
resonance of the liner, in small increments of 5Hz. The density and speed of sound of the fluid are assumed as
r ¼ 1.21 kg/m3 and c ¼ 343m/s, respectively. The radius of the infinite duct is a ¼ 50 cm and the simulated
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flow conditions are defined by the Mach numbers M ¼ 0.0, �0.2, and �0.4, i.e. the flow direction is opposite
to the positive sound propagation. The results are presented in the following subsections.

4.1. Eigenvalues

The obtained complex-valued (non-dimensional) mode eigenvalues akmn are presented in Figs. 3–5 for the
flow conditions M ¼ 0.0, �0.2 and �0.4, respectively. The curves in these figures represent the evolution of
each eigenvalue on the complex plane as a function of frequency. The arrows indicate the direction of
evolution for increasing frequency. For simplicity, only the first three circumferential orders, i.e. m ¼ 0, 1, and
2, are shown since higher orders follow similar behavior. In addition, the results for 10 radial modes are
presented for each circumferential order. Note that for the case without flow, i.e. M ¼ 0.0, the eigenvalues for
positive and negative propagating direction are indistinct (Fig. 3). In contrast, the cases with flow do not
reproduce this symmetry and the eigenvalues describe different paths depending on either direction of
propagation (Figs. 4 and 5). Regardless of the flow condition, it is observed that the eigenvalues start
displacing from the hard wall values at very low frequencies and return to these values at the highest frequency
corresponding to the anti-resonance of the liner. This result is expected since the liner behaves virtually as a
rigid boundary for the two limit frequencies, i.e. impedance approaches infinity. Additionally, the first radial
order describes a significantly wider path than the rest of the modes and eventually encloses a few of them.
Except for these enclosed modes (including the first radial order), the path described by higher order modes is
a closed trajectory that ends on the same ‘‘hard wall’’ order as the starting point. However, the trajectory of
the first radial order ultimately approaches the hard wall eigenvalue of the last enclosed order. Subsequently,
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Fig. 3. Evolution of the non-dimensional eigenvalues in the complex plane for the circumferential mode orders: (a) m ¼ 0, (b) m ¼ 1 and

(c) m ¼ 2, for the case without convective flow (M ¼ 0.0) and using the impedance law in Eq. (24). Key: (B) hard wall eigenvalues; (–––)
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each of the enclosed modes approaches the hard wall eigenvalue of one order lower than the starting point. In
general, the amount of enclosed modes appears to decrease for higher circumferential orders. In fact,
investigations using higher order modes (not shown in this paper) have shown that, from a certain
circumferential order, all corresponding radials describe closed and independent trajectories. Nevertheless, the
mixed behavior observed on the first few radial orders in Figs. 3–5 remarks the importance of tracking the
location of the eigenvalues as a function of frequency in order to correctly identify the ordering of the modes.
For instance, other methods based on meshing the complex plane may provide the correct solution for a single
frequency but they do not contain any information regarding the eigenvalue ordering. Finally, note that the
hypothetical case of a double-pole solution, which depends on the particular impedance law, would occur
when the trajectory of the bigger loop approaches one of the higher order modes. For those cases, a
visualization like the ones presented in Figs. 3–5 can help identify any computation problem, which appears as
a jump of the eigenvalues between trajectories. For most cases, a simple re-adjustment of the computation step
or solving the equation starting from the liner anti-resonance (descending frequency) would fix the problem.

4.2. Axial wavenumbers

This section presents the axial wavenumbers kz obtained from Eq. (7) in terms of the found eigenvalues kmn.
For simplicity, only the first circumferential order m ¼ 0 is presented (the rest of the mode orders behave
similarly). Fig. 6 presents the evolution of the computed wavenumbers in the complex plane as a function of
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Fig. 5. Evolution of the non-dimensional eigenvalues in the complex plane for the circumferential mode orders: (a) m ¼ 0, (b) m ¼ 1 and

(c) m ¼ 2, including convective flow M ¼ �0.4 and using the impedance law in Eq. (24). Key: (–––) positive propagation eigenvalues kðþÞmn

and (- - - - -) negative propagation eigenvalues kð�Þmn .
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frequency for the three flow conditions. As in the previous section, the first 10 radial orders are shown in the
plots. The arrows indicate the direction of the evolution for increasing frequency. For very low frequency, the
wavenumbers are located in proximity to the imaginary axis and, in fact, close to the hard wall wavenumbers.
In addition, for high frequencies, the wavenumbers progress towards the real axis and, therefore, also
approach the hard wall solutions. However, the transitional frequencies present a deviation produced mainly
by the present liner, which causes the eigenvalues kmn to become particularly different from the hard wall
condition, e.g. the wavenumbers directly depend on kmn. For the condition without flow, the solutions depart
from the imaginary axis and move through the second or fourth quadrant of the complex plane, depending on
the solution branch, to eventually reach the real axis at the higher frequencies. The solution branches in the
second (dashed line) and fourth (solid line) quadrants directly correspond to negative and positive
propagation, respectively. In contrast with the hard wall solution, the fact that the wavenumbers are located in
the complex plane (rather than right on either axis) raises the concept of decaying modes instead of cut-on or
cut-off modes. The decaying rate depends on the imaginary part of the wavenumber and the propagating
component is given by the real part.

When flow is included in the simulations (Fig. 6(b) and (c)), the resulting wavenumbers are observed to be
shifted towards the positive complex semi-plane. The main factor responsible for this shift is the real quantity
�k0M/(1�M2) in Eq. (7). Note that since the flow Mach numbers are negative, the effective shift is produced
to the positive semi-plane. In all cases, the convergence to the real axis is observed to be quite smooth except
for one order, which was identified to be the first radial mode. This mode shows a slight divergence away from
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the real axis and then converges normally for high frequencies. This behavior can be explained due to the wide
trajectory described by the corresponding eigenvalue that directly affects the square root term in Eq. (7). In
order to see this effect in more detail, the results for the flow condition M ¼ �0.4 were zoomed and are
presented in Fig. 7. The highlighted (darker) curves for both propagating directions confirm the observation
about the first radial order trajectory, i.e. for n ¼ 0. The imaginary component that results from this deviation
provides a significant attenuation rate causing the first radial mode not to be the least attenuated as it might be
expected [3]. Furthermore, the convergence to the real axis of this first radial order for higher frequencies is
surrounded by trajectories of two higher order modes. Therefore, the mode will not behave as the first radial
order for high frequencies, but as some other mode of higher order. This result is directly related to the
observed high-frequency trajectories of the eigenvalues kmn in Figs. 3–5, where the first radial orders approach
the hard wall eigenvalues of the last enclosed modes. In this particular case, these mode orders are n ¼ 6 for
positive propagating direction and n ¼ 2 for negative direction, which exactly matches the trends in Fig. 5 for
M ¼ �0.4.

5. Final remarks

A numerical approach was applied to find the eigenvalues for the wave equation in a circular duct with soft
wall boundary condition and convective uniform flow. This is very suitable for computing the mode
attenuation properties of resonator-type liners commonly used in the aviation industry. The characteristic
equation was derived in terms of the acoustic admittance of the wall in order to show the two possible solution
branches depending on the direction of propagation. The final expression depends on the flow Mach number,
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which couples the eigenvalues with the axial propagation constants (wavenumbers). Additionally, the resulting
characteristic equations were found to be complex valued and nonlinear with respect to the unknown
eigenvalues kmn. Instead of directly seeking the zeros of the equation using root-finding methods, a more
efficient numerical technique for minimization of real-valued functions of multiple variables was applied, i.e.
the Nelder–Mead simplex method. To this end, the eigenvalues were found by minimizing the absolute value
of the characteristic equation and assuming the real and imaginary part of the solution as two independent
real variables.

A few numerical examples were presented. It was observed that the eigenvalues describe trajectories in the
complex plane as a function of frequency, which start at the location of the hard wall eigenvalues (on the real
axis) and return to these solutions at the frequency of anti-resonance of the liner. However, not all eigenvalues
describe closed trajectories. If fact, the eigenvalues for the first radial orders tend to describe a wider path that
encloses the trajectory of a few higher order modes. Consequently, at the higher frequencies close to the anti-
resonance of the liner, the trajectory of these first radial orders approaches the hard wall eigenvalue of the last
enclosed mode (instead of returning to the starting point). Subsequently, each enclosed mode approaches the
hard wall eigenvalue of one order less than the starting point. This behavior stresses the importance of
tracking the location of the eigenvalues as a function of frequency in order to identify the correct mode
ordering.

The solution of the axial propagation constants (wavenumbers) was also investigated. The solutions start
close to the imaginary axis for low frequencies and move towards the real axis across mainly the second and
fourth quadrants, depending on the direction of propagation. Their trajectories on the complex plane were
identified to be directly related to the corresponding eigenvalue solutions.



ARTICLE IN PRESS
J.S. Alonso, R.A. Burdisso / Journal of Sound and Vibration 315 (2008) 1003–1015 1015
References

[1] P.M. Morse, K.U. Ingard, Theoretical Acoustics, McGraw-Hill Book Company, New York, 1968.

[2] D.C. Pridmore-Brown, Sound propagation in fluid flowing through an attenuating duct, Journal of Fluid Mechanics 4 (1958) 393–406.

[3] S.H. Ko, Sound attenuation in a lined rectangular duct with flow and its application to the reduction of aircraft engine noise, The

Journal of the Acoustical Society of America 50 (6) (1971) 1418–1432.

[4] B.J. Tester, The propagation and attenuation of sound in lined ducts containing uniform or ‘plug’ flow, Journal of Sound and

Vibration 28 (1973) 151–203.

[5] S.H. Ko, Sound attenuation in acoustically lined circular ducts in the presence of uniform flow and shear flow, Journal of Sound and

Vibration 22 (1972) 193–210.

[6] M.K. Myers, On the acoustic boundary condition in the presence of flow, Journal of Sound and Vibration 71 (3) (1980) 429–434.

[7] B.J. Tester, Some aspects of ‘sound’ attenuation in lined ducts containing inviscid mean flows with boundary layers, Journal of Sound

and Vibration 28 (2) (1973) 217–245.

[8] W. Eversman, Theoretical Models for Duct Acoustic Propagation and Radiation, Aeroacoustics of Flight Vehicles: Theory and Practice,

Vol. 2, NASA Reference Publication 1258, TR 90-3052, 1991, pp. 101–163.

[9] W.E. Zorumski, Acoustic theory of axisymmetric multisectioned ducts, NASA TR R-419, 1974.

[10] J.A. Drischler, Analytic studies of sound pressures inside the duct of ducted propellers, NASA TN D-6345, 1971.

[11] J.A. Nelder, R. Mead, A simplex method for function minimization, The Computer Journal 7 (1965) 308–313.

[12] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder–Mead simplex method in low

dimensions, SIAM Journal on Optimization 9 (1) (1998) 112–147.

[13] COMPAQ, IMSLs Fortran 90 MP Library, Visual Numerics, Inc., 1999.

[14] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numerical Recipes in C, Cambridge University Press, Cambridge, UK,

1988.

[15] MATH WORKS, MATLAB, The Math Works, Natick, MA, 1994.

[16] R.F. Hallez, Investigation of the Herschel-Quincke Tube Concept as a Noise Control Device for Turbofan Engines, MS Thesis,

Virginia Tech, 2001.

[17] S.W. Rienstra, A classification of duct modes based on surface waves, Wave Motion 37 (2003) 119–135.

[18] L. Rayleigh, Theory of Sound, Vol. 2, Dover Publications, New York, 1877 (re-issued 1945).

[19] J.W. Miles, On the disturbed motion of a plane vortex sheet, Journal of Fluid Mechanics 4 (5) (1958) 538–552.

[20] A.B. Friedland, A.D. Pierce, Reflection of acoustic pulses from stable and unstable interfaces between moving fluids, Physics of Fluids

12 (6) (1969) 1148–1159.

[21] K.W. Tam, Directional acoustic radiation from a supersonic jet generated by shear layer instability, Journal of Fluid Mechanics 46 (4)

(1971) 757–768.

[22] S.W. Rienstra, Hydrodynamic instabilities and surface waves in a flow over an impedance wall, Proceedings of the IUTAM

Symposium on ‘Aero- and Hydro-Acoustics’, Springer, Heidelberg, 1985, pp. 483–490.

[23] D.T. Sawdy, R.J. Beckemeyer, J.D. Patterson, Analytical and experimental studies of an optimum multisegment phased liner noise

suppression concept, NASA CR-134960, 1976.

[24] R.E. Kraft, Theory and Measurement of Acoustic Wave Propagation in Multi-segmented Rectangular Flow-ducts, PhD Dissertation,

University of Cincinnati, 1976.
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